

Présentation générale

1) Définition

Production simultanée de deux formes d'énergie utilisable à partir d'un combustible primaire : - Energie mécanique ou électrique

- Chaleur

2) Intérêt

Production séparée

a) Parc actuel (français)

Combustible			Energi	ie produite	Pertes
152	90	Centrale électrique rendement 39 %		35	67
b) Parc idéal	62	Chaudière rendement 80 %		50	67
123	67	Centrale électrique rendement 52.5 %		35	38
	56	Chaudière rendement 90 %		50	

Cogénération

	Combustible		Energie produite	Pertes
100		Cogénération rendement 85 %	35	15
			50	
130		Cogénération rendement 65 %	35	45
			50	

Formulaire technique

C : Energie consommée en quantité horaire sous forme de combustible

M : Energie mécanique

W : Energie électrique

Q : Energie thermique

P : Energie perdue (pertes diverses)

 $\begin{array}{ll} \textbf{R}_{\textbf{m}} & : \text{rendement m\'ecanique} & R_{m} = M/C \\ \textbf{R}_{\textbf{e}} & : \text{rendement \'electrique} & R_{\textbf{e}} = W/C \\ \textbf{R}_{\textbf{t}} & : \text{rendement thermique} & R_{\textbf{t}} = Q/C \end{array}$

 $\mathbf{R_g}$: rendement global : $\mathbf{R_g} = \mathbf{(W+Q)/C} = \mathbf{R_e} + \mathbf{R_t}$

C = W + Q + P

 \mathbf{R}_{ee} : rendement électrique équivalent $R_{ee} = \frac{W}{C - (Q/\eta^*)}$

η : rendement d'une chaudière classique, ici il est de 0,8

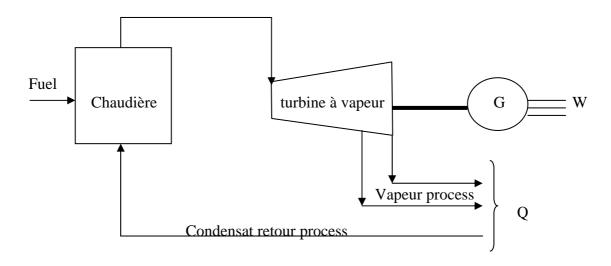
C_E : consommation spécifique équivalente

$$C_{E} = \frac{C - \left(Q/\eta^{*}\right)}{W}$$

$$C_E = \frac{1}{R_{aa}}$$

 C_F (rapport Force / Chaleur) $C_F = W / Q$

 $\textbf{E}_{\textbf{p}} \quad \text{: coefficient d'estimation de l'incitation supplémentaire} \quad E_{\textbf{p}} = \frac{\frac{W}{0.525} + \frac{Q}{0.9}}{C}$

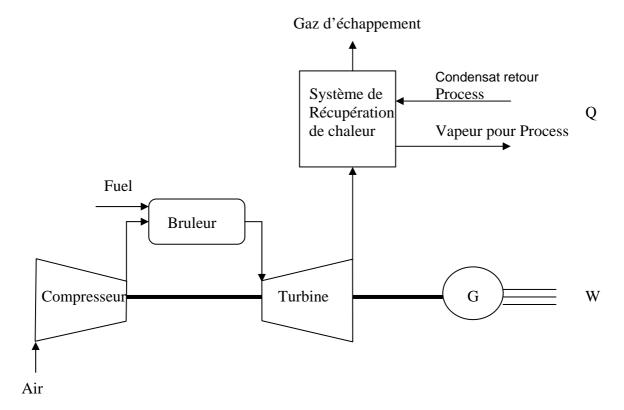

 $\mathbf{R}_{\mathbf{x}}$: rendement exergétique, rendement qualificatif d'un processus énergétique

 $R_x = \frac{W + \eta_c \cdot Q}{C} \qquad \eta_c \Rightarrow \text{facteur de Carnot} \qquad \qquad \eta_c = 1 - \text{To } / \text{T}$

To = température ambiante ; T = température à laquelle la chaleur est fournie (en kelvins)

Technologie

1) Turbine à vapeur



- plusieurs types : à contrepression, à condensation
- possibilités de récupérer de la vapeur à plusieurs niveaux de pression
- puissance : 0.5 100 MW
- fiabilité: 95 %
- disponibilité : 90 95 %Durée de vie : 25 à 35 ans

Performance:

- Rg = 60 85 %
- Re = 15 20 %
- Cf = 0.1 0.5

2) Turbine à gaz

- plusieurs types : Cycle ouvert ou fermé

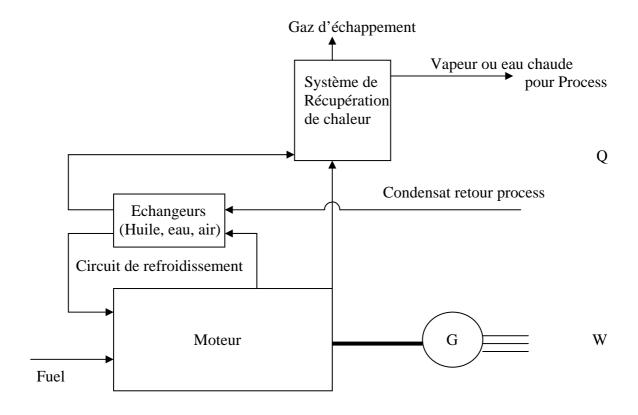
- possibilités de récupérer de la vapeur à plusieurs niveaux de pression

possibilité de post-combustion

- puissance : 0.1 – 100 MW

- fiabilité : 95 %

disponibilité: 90 - 95 %Durée de vie: 15 à 20 ans


Performance:

- Rg = 60 - 80 %

- Re = 25 - 40 %

- Cf = 0.5 - 1.5

3) Moteur alternatif à combustion interne

- plusieurs types : allumage commandé, Diesel
- plusieurs types de carburant
- possibilité de post-combustion
- puissance : 0.1 100 MW
- disponibilité : 95 %
- Durée de vie : 5 à 20 ans

Performance:

- Rg = 60 85 %
- Re = 35 50 %
- Cf = 0.8 2.4

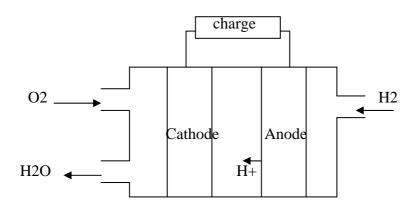
4) Cycle combiné

Association d'une turbine à gaz et d'une turbine à vapeur

puissance : 20 – 400 MW
 fiabilité : 80 –85 %

disponibilité : 77 -85 %Durée de vie : 15 à 25 ans

Performance:


- Rg = 70 - 88 %

- Re = 35 - 45 %

- Cf = 0.6 - 2.0

5) Pile à combustible

Appareil qui convertit directement l'énergie chimique du combustible en électricité.

Les réactions peuvent s'écrire :

Anode: H2 \longrightarrow 2 H+ + 2 e-

Cathode: $2H + \frac{1}{2}O2 + 2e \longrightarrow H2O$

Réaction totale : $H2 + \frac{1}{2}O2 \longrightarrow H2O$

Différents types de piles à combustible existent : alcaline, acide phosphorique ...

Performance:

- Rg = 85 90 %
- Re = 37 45 %
- Cf = 0.8 1.0

6) Moteur Stirling

Moteur à combustion externe fonctionnant à partir d'une source chaude et d'une source froide.

- puissance : 3 KW – 1.5 MW

Performance:

- Rg = 70 88 %
- Re = 30 50 %
- Cf = 1.2 1.7

7) Les alternateurs

Les 3 types de puissance : - apparente = $\sqrt{3}$ U I (unité : kVA)

- active = $\sqrt{3}$ U I cos φ (unité : kW)

- réactive = $\sqrt{3}$ U I sin φ (unité : kVAR)

a) Les alternateurs synchrones

Générateur de courant alternatif avec : N = (60 x F)/p et courant d'excitation interne.

- N : vitesse de rotation en tr/min
- F : fréquence du courant en Hz
- p : nombre de paires de pôles magnétiques

Avantages: - fonctionnement isolé possible

- permet la compensation d'un faible $\cos \phi$

b) Les alternateurs asynchrones

Générateur de courant nécessitant une connexion au réseau. La tension et la fréquence dépendent du réseau, la puissance dépend de la vitesse de rotation.

Avantage: - faible coût

8) Les systèmes de stockage

Stockage de chaleur : par la chaleur sensible

par la chaleur latente par technique chimique stockage de froid

Stockage d'électricité : système de pompe

Air comprimé Electrochimique Energie chaleur

Les effets de la cogénération

1) Economie d'énergie primaire

- meilleur rendement que la production séparée
- moins de pertes d'énergie électrique par le réseau

2) Impact sur la production d'électricité

- augmentation de la capacité de production globale (différents effets suivant les pays)
- possibilité de perturbations sur le réseau

3) Impact économique

- Diminution des importations globales d'énergie primaire
- Ouverture des marchés
- Production décentralisée

4) Effets sur l'environnement

- Emissions globales, émissions locales
- Bruit, vibrations ...

Analyse économique d'un système de cogénération

Coût d'un système de cogénération

- a) Coût d'investissement :
 - Coût des équipements : . Moteur, turbine et alternateur
 - . Système de récupération de chaleur
 - . Brûleur supplémentaire
 - . Traitement des fumées, caisson anti-bruit
 - . Raccordement gaz et électricité
 - . Raccordement circuit vapeur ou eau chaude ...
 - Coût d'installation : . Permis de construire
 - Achat et préparation du terrainConstruction du bâtiment
 - Coût du projet : . Architecte, Dessin industriel
 - . Maîtrise d'ouvrage
 - . Etudes environnementale, DRIRE ...
 - . Essais ...
- b) Coût de fonctionnement et de maintenance
 - Combustible : environ 80 % du coût de fonctionnement, ne pas oublier les consommables (huile, eau, produit chimique ...)
 - Personnel : dépend de la taille de l'installation
 - Maintenance : type d'installation, de combustible, de fonctionnement ...
 - Assurance: 0.25 à 2 % du capital
 - Coût de structure, taxes, intérêts sur prêt ...
- c) Ordre de grandeurs des coûts d'investissement

- Turbine à vapeur : 6 000 à 14 000 FHT / KWh installé
- Turbine à gaz : 2 500 à 6 000 FHT / KWh installé
- moteur à gaz : 4 000 à 8 000 FHT / KWh installé

d) Ordre de grandeurs des coûts de maintenance

- Turbine à vapeur : 1 à 1.5 centimes / KWh e
- Turbine à gaz : 3 à 3.5 centimes / KWh e
- moteur à gaz : 4 à 6 centimes / KWh e

Etude et dimensionnement d'une installation de cogénération

Questions: - Type de technologie

- Nombre de machines et puissance nominale

- Système de récupération de chaleur

- Capacité de stockage

- Connexion au réseau électrique

- Période de fonctionnement et type de régulation.

Méthode : - Première évaluation

- Etude de faisabilité

- Conception détaillée

1) Première évaluation

- Courbes de charge électrique et thermique

- Possibilité d'économie d'énergie avant la mise en place d'une cogénération
- Changements de process prévisibles ?
- Compatibilité entre les besoins thermiques et la chaleur fournie par la cogénération.
- Espace disponible pour l'installation
- Possibilités de connexion au réseaux électriques et thermiques
- Conséquences de l'installation sur les besoins d'autres installations comme les chaudières, les groupes de secours...

2) Etude de faisabilité

1. Rassembler les informations et les courbes de charges concernant les différents types d'énergie : électricité, vapeur aux différents niveaux de température et de pression, eau chaude, froid ...

Ces différentes courbes de charges seront tracées par heures, jours, semaines, mois, saisons ...

- 2. Rassembler les informations concernant les prix de l'électricité et du gaz et la législation s'y rapportant.
- 3. Sélectionner la technologie permettant d'obtenir l'énergie chaleur nécessaire
- 4. Choisir le nombre d'unités et leurs puissances. Pour augmenter le rendement énergétique, il faut que la totalité de la chaleur soit utilisée.
- 5. Choisir le type de fonctionnement et calculer les performances énergétiques et économiques.
- 6. Répéter les actions 3, 4 et 5 pour différentes combinaisons de technologies, de nombre, puissance d'unités et de mode de fonctionnement
- 7. Une étude de l'impact du système choisi sur l'environnement peut être réalisée.

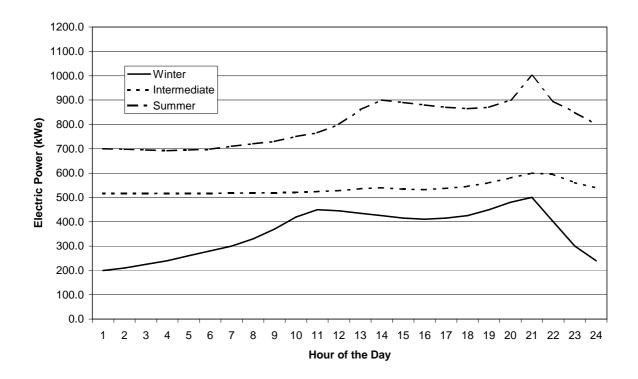


Fig. 7.1. Hourly electric power profiles for typical days in winter, intermediate season and summer in a hotel.

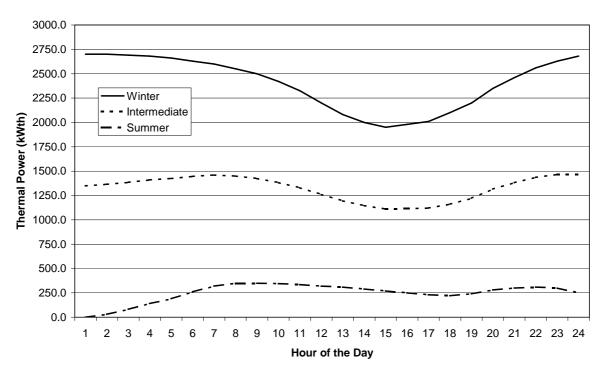


Fig. 7.2. Hourly thermal power (space heating and hot water) profiles for typical days in winter, intermediate season and summer in a hotel.

Mode de fonctionnement

Exemples

- 1. Dimensionnée par rapport aux besoins en chaleur
- 2. Dimensionnée par rapport aux besoins électriques
- 3. Dimensionnée par rapport aux deux
- 4. Fonctionnement en autarcie

Etat et perspectives pour la cogénération

1) Politique européenne

Objectifs: - Garantir l'approvisionnement

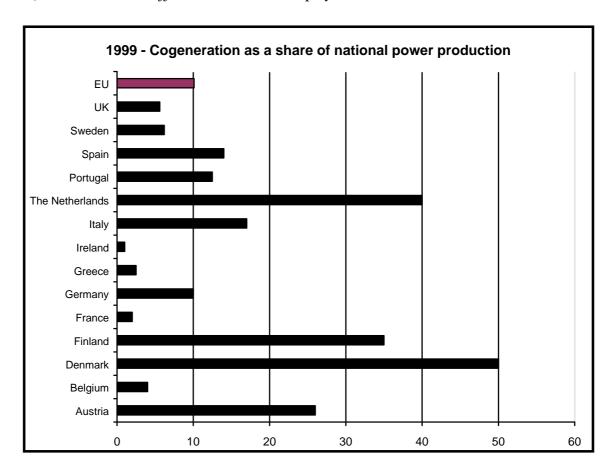
- Faire fonctionner la concurrence industrielle

- Protéger l'environnement

a) Libéralisation du marché du gaz et de l'électricité

Electricité: 25 % en 1999

28 % en 2002 33 % en 2003


b) Protection de l'environnement

Accord de KYOTO: réduction des émissions de CO2 de 8 % en 2010 (/1990)

c) Objectif européen

18 % de l'électricité produite en 2010

2) Contribution différente suivant les pays

3) Situation en France

a) Historique

8 avril 1946 : loi sur la nationalisation de l'électricité et du gaz modifiée par la loi

Armengaud du 2 août 1949 et la loi Giraud du 15 juin 1980.

20 décembre 1994 : décret sur l'obligation de rachat permanente pour les installations de

cogénération

23 janvier 1995 : arrêté de spécification sur les Certificats de Conformité, qui définit la

cogénération et les différents cas d'obligation de rachat d'électricité.

1er novembre 1996 : contrat d'achat cogénération 97-01

19 décembre 1996 : directive européenne concernant les règles communes pour le marché

intérieure de l'électricité

12 mars 1999 : dispositif transitoire limité à 500 MW

b) Bilan sur les installations

Année	Nombre d'installations	Puissance électrique totale En MW(e)
1995	55	163
1996	67	208
1997	82	572
1998	135	1320
1999	144	953
2000	91	446
TOTAL	948	3662

c) Environnement réglementaire

1. Couplage au réseau

2. Certificat de conformité : - Rendement global moyen supérieur à 65 %

- Rapport Force / Chaleur supérieur à 0.5

- Utilisation effective et justifiable de la chaleur

3. Loi sur les installations classées

4. Réglementation environnementale